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using data assimilation

M. J. Martin1;∗, M. J. Bell1 and N. K. Nichols2

1Met O�ce; London Road; Bracknell; Berkshire RG12 2SY; U.K.
2The University of Reading; Whiteknights; Reading; Berkshire RG6 6AH; U.K.

SUMMARY

Assimilation of temperature observations into an ocean model near the equator often results in a dynam-
ically unbalanced state with unrealistic overturning circulations. The way in which these circulations
arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on
the theory of state augmentation, which uses the departures of the model state from the observations
to update slowly evolving bias �elds. Results are summarized from an experiment applying this bias
correction scheme to an ocean general circulation model. They show that the method produces more
balanced analyses and a better �t to the temperature observations. ? Crown copyright 2002. Reproduced
with the permission of Her Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Assimilation of data into ocean models is becoming increasingly viable. Substantial in situ
real-time observing networks such as the TAO buoy array [1], and the Argo (1999) array of
autonomous pro�ling �oats have been or are being deployed. Satellite measurements of the
surface wind stress and sea surface height are also available for assimilation by operational
centres.
A particular problem for seasonal forecasting is that, unless particular care is taken, ocean

models do not retain the observational data assimilated into them for more than a few months
but drift away towards their own climatologies in the key regions of variability within a
few degrees of the equator. There have been a number of studies to address problems of
systematic model errors. Of particular relevance to this paper, are some studies in the context
of Kalman �lters [2]. Friedland [3], proposed augmenting the state vector by a model bias
vector and transforming the gain matrices of the Kalman �lter to produce a computationally
cheaper method. Dee and Da Silva [4], hereafter referred to as DDS, have applied this idea to
numerical weather prediction (NWP). In this paper we build on the ideas of DDS and Gri�th
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and Nichols [5], by developing a formulation of the augmented state method to produce
balanced analyses near the equator and show results of the application of the method.

2. PROBLEMS ARISING FROM DATA ASSIMILATION NEAR THE EQUATOR

In normal years easterlies blow along the equator in the Paci�c. The surface wind stress is
mixed down only over the top 50–100m of the ocean and to oppose this stress by a suitable
near-surface pressure gradient the surface of the ocean tilts so that it is higher in the west
than the east. This pressure gradient reduces markedly with depth because the water on the
eastern side of the Paci�c in the upper ocean is colder than that on the western side. In
El Niño years the easterly wind stresses are weaker and the surface pressure gradients and
sub-surface density gradients weaken to maintain the overall balance.
The horizontal momentum equations can be written as
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where (x; y) and (u; v) are the eastward and northward co-ordinates and velocities, respectively,
(�x; �y) are the corresponding components of the wind forcing and � represents an advective
operator. In the equatorial region, the terms on the left-hand side of these equations are small
compared to the pressure gradients and wind stress gradients so that
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The main dynamical balance along the equator is therefore between the wind stress and the
pressure gradients. Any disruption to this balance will induce unrealistic horizontal velocities
which, through continuity, will result in large vertical velocities.
Data assimilation disrupts the balance between pressure gradients and wind stress in the

case when the wind stress driving the ocean model is too weak. In this case, assimilation
increments to the density �eld over-strengthen the subsurface pressure gradient. Similarly
unbalanced pressure gradients could result if the parameterization of the downward vertical
mixing of momentum input by the wind stress were �awed. Equatorial ocean models were
enormously improved by Pacanowski and Philander’s parameterization of this process [6], but
as the parameterization is very di�cult it is likely to have signi�cant residual errors.
The problems which arise near the equator are illustrated using two integrations described

in detail in Reference [7] with the Forecasting Ocean–Atmosphere Model (FOAM). The �rst
assimilates surface temperature and thermal pro�le data. The second is identical to the �rst
except that no data is assimilated. The integrations start from a state of rest with potential
temperatures and salinities derived from the Levitus (1994) climatology [8], for the 1st May.
They are forced by monthly mean climatological �uxes. The wind stresses are taken from
Hellerman and Rosenstein [9], which are generally regarded as being too strong in the equa-
torial regions. The data assimilation component is based on the analysis correction scheme

? Crown copyright 2002. Reproduced with the permission of Her
Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd. Int. J.Numer.Meth. Fluids 2002; 40:435–444



ESTIMATION OF SYSTEMATIC ERRORS IN AN OCEAN MODEL 437

Figure 1. Annual mean (second year) potential temperature (◦C) cross-section along equator between
140◦E and 90◦W: (a) control without data assimilation and (b) with data assimilation.

Figure 2. Annual mean (second year) potential temperature increments (◦C month−1) cross-section along
equator between 140◦E and 90◦W for run with data assimilation.

of Lorenc et al. [10]. No salinity data are used and no salinity increments are made by the
assimilation scheme. Observations valid from the 1st May 1995 to 30th April 1996 were
assimilated. Neither an El Niño nor a La Niña event occurred during this period. The inte-
grations presented ran for two years. The data assimilation run assimilated the same data in
both years of integration.
Figures 1(a) and 1(b) show the time mean of the potential temperature �eld along the

equator in the Paci�c for the second year of the control and assimilation integrations, respec-
tively. It is clear from these plots that the assimilation acts to tighten the thermocline so that
the temperature gradient is much steeper with data assimilation, as required.
Figure 2 shows the time-mean cross-section of the potential temperature increments made

by the data assimilation component during the second year of the assimilation along the
same section as Figure 1. The increments are very large, exceeding 3◦C month−1 over large
areas. This indicates that in these regions over the course of the second year of integration
the data assimilation warmed=cooled the ocean by more than 36◦C and the ocean model
cooled=warmed the ocean by similar amounts. The density change caused by the input of heat
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Figure 3. Annual mean (second year) vertical velocities (cm s−1) cross-section across equator at 110◦W:
(a) control without data assimilation and (b) with data assimilation.

by the assimilation induces persistent vertical advection in the model. An example of this
is shown in Figure 3. Thus, the ocean model cannot be considered to be in a satisfactory
dynamical balance during the assimilation, and any forecast made from an assimilation state
is likely to drift very rapidly during the �rst months of the forecast.
In the horizontal velocity �elds (not shown here), the wind-driven near surface westward

current and the eastward equatorial undercurrent are present in the control integration. In the
assimilation experiment, the undercurrent does not penetrate as far to the east in the model
as it should do and the surface currents are reversed in part of the region.

3. FORMULATION OF METHOD

3.1. Augmented state treatment of models with systematic errors

For models containing systematic errors, a standard approach is to augment the model state
with a set of systematic model error variables [3] and DDS. This section presents the main
ideas involved in this approach.
The evolution of the true state of the ocean, x tk ∈Rn, from time tk to tk+1 is taken to be

described by the stochastic vector di�erence equation

x tk+1 =M
t(x tk ; u

t
k) + �

t
k (4)

where superscript t represents true �elds, Mt:Rn×Rm→Rn is the true system operator,
u tk ∈Rm is the vector of true model inputs (such as surface wind stress) and �tk ∈Rn is a
vector of random disturbances, assumed to form a white Gaussian sequence.
The observations are assumed to be given by the equation

yk =Hk(x tk) + �k (5)

where yk ∈Rpk is the vector of observations available at time tk which is related to the true
state of the system through the observation operator Hk :Rn→Rpk and contains random errors
�k ∈Rpk which are assumed to form a white Gaussian sequence.
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The equation which models the system can be written as

xk+1 =Mm(xk ; uk) + �mk (6)

where superscript m represents model �elds, Mm:Rn×Rm→Rn is the model system
operator and �mk ∈Rn is a vector of random disturbances, assumed to form a white Gaussian
sequence.
It is usually assumed that the forecast model is deterministic, �mk ≡ 0; is perfect, Mm≡Mt;

and has perfect inputs, uk ≡ u tk . In this case, the normal data assimilation process may be
applied and the analysed solution can be made to converge to the true solution over time by
suitable choices of the gain matrix, given certain conditions [11]. For ocean models, these
assumptions about the forecast model are not valid. This is also true for many other applica-
tions such as humidity �elds in NWP. When modelling systems such as the oceans, the exact
representation of the true system on the model grid will not be known, and approximations
to the true operator have to be made. Also, the inputs to the model are not always known
accurately.
We now suppose instead that the model used to propagate the state variables and inputs

contains systematic errors. We write this assumption as

Mm(xk ; uk)=Mt(xk ; uk) + T (bk) (7)

where bk ∈Rq and T :Rq→Rn is some operator which is to be chosen. The vector bk is not
strictly the systematic model error vector after introducing the operator T . However, we call
this vector the model bias in this section for convenience. The operator is included because
it is possible that only certain parts of the model will contain systematic errors, i.e. q¡n.
T is usually taken to be the identity as in DDS but there are other possible choices. In the
pressure correction method described in the following subsection, we take the operator T to
be of a speci�c form, based on our understanding of the nature of the systematic errors.
We assume that the evolution of the model biases is governed by the stochastic vector

di�erence equation

bk+1 =W (bk ;xk) + �k (8)

where W :Rq×Rm→Rq evolves the model bias variables and �k ∈Rq forms a white Gaussian
sequence.
If the normal data assimilation process is applied to the system with systematic model errors,

the analysed solution will not converge to the true solution as time increases. If we augment
the state vector with the vector of model bias variables and apply the data assimilation process
to this augmented state however, then it can be shown in the linear case that the analysed
state vector can be made to converge to the true state vector, given similar conditions to those
for the normal data assimilation problem [12]. This convergence assumes that we know how
the systematic model error evolves in time.
The idea of state augmentation can be applied to any of the data assimilation methods. In

the case of Optimal Interpolation [13], the analysis step can be written as

xak = x
f
k + K

x
k [yk −Hk(xfk)] (9)

bak = b
f
k + K

b
k [yk −Hk(xfk)] (10)
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where the gain matrices are determined by

Kxk = P
f
(xx)(tk)H

T
k [HkP

f
(xx)(tk)H

T
k + Rk]

−1 (11)

Kbk = P
f
(bx)(tk)H

T
k [HkP

f
(xx)(tk)H

T
k + Rk]

−1 (12)

Here, Pf(xx)(tk)∈Rn×n is the forecast error covariance matrix for the state variables, Pf(bx)(tk)∈
Rq×n is the cross-covariance matrix between the errors in the state and errors in the model bias
variables, Hk ∈Rpk × n is the linearized observations operator and Rk ∈Rpk ×pk is the observation
error covariance matrix.
As well as converging to the true state vector, a potential advantage of this method is that

we obtain an estimate of the errors in the model which might help to improve its weaker
components. A di�culty of the method is that we may not know exactly how the systematic
model errors evolve. If we can make a reasonable estimate, however, the analysis of the
augmented state should provide a better analysis than that without the systematic model error
correction.

3.2. The pressure correction method

We now introduce speci�c choices for Kbk , T and W for the bias correction, aimed at reducing
the e�ects of the systematic errors described in Section 2, that is to restore the balance
between the surface wind stress and the model’s pressure gradients. We assume that we have
observations of potential temperature and salinity only, and use these observations to produce
bias �elds which will correct the model’s pressure gradients.
In the normal data assimilation procedure, increments to the potential temperature and

salinity �elds are made using the di�erences between the observed and model forecast �elds.
To produce estimates of the bias in these model �elds, an analysis of the form of Equation (10)
is performed, i.e.

�bak = �
bf
k + K

b�
k [�

o
k −H�

k (�
f
k)] (13)

Sbak = S
bf
k + K

bS
k [S

o
k −HS

k (S
f
k)] (14)

where �k and Sk are the potential temperature and salinity, respectively, at time tk , superscript
b indicates a bias �eld, superscript a indicates an analysis, superscript f indicates a forecast,
superscript o denotes observations, H�

k interpolates from the model grid to the temperature
observations’ positions and HS

k interpolates from the model grid to the salinity observations’
positions. The forecast model of �bk and S

b
k is assumed in this paper to be constant, so that

�bfk+1 = �
ba
k (15)

Sbfk+1 = S
ba
k (16)

although this can be altered if something is known about how the bias �elds evolve. Initially,
the temperature and salinity bias �elds are set to zero, i.e. �ba0 =S

ba
0 = 0.
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The expression for the gain matrix for the bias variables written in Equation (12) involves
the cross-covariance matrix for the errors in the state and model bias variables. Statistics for
this calculation would be very di�cult to obtain so we choose this matrix to be of a simple
form,

K bk =−�Kxk (17)

where � is a constant between zero and one.
The estimates of the biases in the temperature and salinity �elds described in Equations (13)

and (14) should now be used to calculate a bias in the pressure �eld so that the balance
described in Section 2 between the pressure gradient and wind forcing can be restored. This
is done by making use of the operator T in Equation (7), so that the bias �elds are not
simply added onto the model equations. Instead, a biased density �bk is calculated through the
equation of state,

�bk =�(�
ma
k + �bak ;S

ma
k + Sbak )− �mk (18)

and this is used through the hydrostatic equation to produce a compensating model ‘pressure’
�eld,

pbk(z)=
∫ z

−H
−�bk g dz (19)

where z is the depth, H is the depth of the ocean and g is the gravitational constant. The
pressure at the bottom of the model is kept the same during this calculation. Also, the model’s
potential temperature and salinity �elds are not altered during this operation.
The corrected pressure �eld is now used in the horizontal momentum equations which can

be written in the continuous case as

�(@um=@t + �(um)− fvm) =−@(pm + pb)=@x + @�xz=@z (20)

�(@vm=@t + �(vm) + fum) =−@(pm + pb)=@y + @�yz=@z (21)

so that the compensating pressure �eld should restore the balance between the pressure gra-
dients and the wind stress described in Section 2.

4. RESULTS

An analysis of the pressure correction method applied to the linear shallow water equations on
a �-plane is given in Reference [14]. This shows that with complete observational coverage of
the surface height �eld, the pressure correction method will ensure that the density, pressure
and vertical velocity �elds will all match those of the true solution even when the solution is
driven by incorrect wind stresses. In the absence of pressure correction, none of these �elds
match the true solution.
The integration assimilating data described in Section 2 has been repeated using the pressure

correction scheme as described in Section 3.2. The weighting of the error covariance described
in Equation (17) is chosen to be (i) �=0:1 and (ii) �=0:3. Figures 4(a) and 4(b) show the
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Figure 4. Annual mean (second year) potential temperature (◦C) cross-section along equator between
140◦E and 90◦W: (a) pressure correction, �=0:1 and (b) pressure correction, �=0:3.

Figure 5. Annual mean (second year) potential temperature increments (◦C month−1) cross-section along
equator between 140◦E and 90◦W: (a) pressure correction, �=0:1 and (b) pressure correction, �=0:3.

time mean potential temperature �elds for these two integrations in a form which enables
direct comparison with the results discussed in Section 2. Figures 1(b) and 4(a) and 4(b)
are generally in quite close agreement—the thermocline still contains the tight temperature
gradients—but there are discernible di�erences particularly below 100 m depth near 90◦W.
The time mean potential temperature increment �elds from the two pressure correction

runs along the equator in the Paci�c are shown in Figure 5. It is clear that the temperature
increments are much smaller in magnitude for the runs with the pressure correction included
than for the standard integration shown in Figure 2, and are constrained to the top 150 m.
The maximum values for the pressure corrected runs are about 2◦C per month compared with
4◦C per month for the run with normal data assimilation.
Figure 6 shows that the large annual mean vertical velocities below 150 m depth which

were present in the run with normal data assimilation at the 110◦W cross-section have been
eliminated. For the horizontal velocities (not shown here), the maximum speed in the equato-
rial undercurrent and increased eastward penetration of the current in both pressure correction
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Figure 6. Annual mean (second year) vertical velocities (cm s−1) cross-section across equator
at 110◦W: (a) pressure correction, �=0:1 and (b) pressure correction, �=0:3.

integrations are signi�cant improvements over both the control and standard assimilation in-
tegrations. The surface currents are now of similar structure to the control, with the reversal
of the surface currents in the run with normal data assimilation having been eliminated.

5. CONCLUDING SUMMARY

It has been shown that simple assimilation of thermal pro�le data from the equatorial Paci�c
into an OGCM can result in unrealistically strong vertical motions near the equator which
counteract some of the increments made by the data assimilation scheme and lead to similar
increments to the model state being repeatedly made by the assimilation scheme. This problem
is explained to be due to di�culties in representing the momentum balance in the equatorial
oceans which can lead to an ocean state with a biased density �eld and hence unbalanced
density increments.
The pressure correction method is presented as an application of the general bias correc-

tion theory which, motivated by the dynamics, makes speci�c choices for estimates of the
covariances between errors in the model state and the model bias. In particular, it assumes
that the biases in the model equations are con�ned to the momentum equations and amends
them only by addition of a pressure gradient bias �eld. The results of experiments with the
FOAM system show that, when using the pressure correction method, the time mean verti-
cal velocities and temperature increments are smaller than the standard assimilation scheme,
indicating that the pressure correction produces a more balanced ocean state.
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